Soliton Theory, Symmetric Functions and Matrix Integrals

نویسنده

  • A. Yu. Orlov
چکیده

We consider certain scalar product of symmetric functions which is parameterized by a function r and an integer n. One the one hand we have a fermionic representation of this scalar product. On the other hand we get a representation of this product with the help of multi-integrals. This gives links between a theory of symmetric functions, soliton theory and models of random matrices (such as a model of normal matrices).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological soliton solutions of the some nonlinear partial differential equations

In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...

متن کامل

Selected Aspects of Soliton Theory Constant boundary conditions

Brief review of the methods for solving the multicomponent nonlinear Schrödinger (MNLS) equations and analysis of their Hamiltonian structures is given. Main attention is paid to the MNLS related to the C.IIand D.III-types symmetric spaces with nonvanishing (constant) boundary conditions. The spectral properties of their Lax operators are described. The derivation of the trace identities is out...

متن کامل

Toda versus Pfaff Lattice and Related Polynomials

The Pfaff lattice was introduced by us in the context of a Lie algebra splitting of gl (∞) into sp (∞) and an algebra of lower-triangular matrices. The Pfaff lattice is equivalent to a set of bilinear identities for the wave functions, which yield the existence of a sequence of “τ -functions”. The latter satisfy their own set of bilinear identities, which moreover characterize them. In the semi...

متن کامل

The Plancherel decomposition for a reductive symmetric space II. Representation theory

We obtain the Plancherel decomposition for a reductive symmetric space in the sense of representation theory. Our starting point is the Plancherel formula for spherical Schwartz functions, obtained in part I. The formula for Schwartz functions involves Eisenstein integrals obtained by a residual calculus. In the present paper we identify these integrals as matrix coefficients of the generalized...

متن کامل

The exponential functions of central-symmetric $X$-form matrices

It is well known that the matrix exponential function has practical applications in engineering and applied sciences. In this paper, we present some new explicit identities to the exponential functions of a special class of matrices that are known as central-symmetric $X$-form. For instance, $e^{mathbf{A}t}$, $t^{mathbf{A}}$ and $a^{mathbf{A}t}$ will be evaluated by the new formulas in this par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008